在体外,激酶活性的检测是将经免疫沉淀法获得的蛋白激酶与某一底物在ATP环境下共同孵育,然后再检测。磷酸化底物的测量可以通过报告系统如比色法、放射性或荧光检测而得。
磷酸化抗体已被许多研究者使用。首先合成磷酸化多肽,即围绕靶蛋白磷酸化位点的氨基酸序列,接着共轭偶联至血蓝蛋白(KLH)上进行免疫。免疫血清将流经多肽亲和层析柱, 从而得到一个非常特异的免疫制剂。检测的成功与否取决于抗体对靶磷酸化蛋白的特异性和亲和力。
ELISAs提供一种间接测量激酶活性的方法,其比WB更容易定量。磷酸化特异的ELISA技术可以很轻易地通过使用一个校准标准来量化结果。通过双抗体夹心方法,应用两个靶蛋白的特异性抗体可使检测呈现高特异性。此外,基于微孔板的ELISAs检测,更是具有高通量、 微量和对低丰度蛋白检测的特点。
通过分析完整的细胞中磷酸化蛋白,可更准确地反应特性的信号网络状态。一般磷酸化抗体多通过荧光或比色法来检测磷酸化状态。
流式细胞术因其快速、定量、单细胞分析等特点而非常具有优势。细胞被诱导后,通过甲醛或多聚甲醛将其与磷酸化蛋白交联固定,然后分析。固定的细胞需经通透处理,以便磷酸化抗体的进入。
质谱(MS)技术是一项用于识别磷酸化蛋白、磷酸化多肽和磷酸化残基序列的便利工具。利 用MS卓越的灵敏度和分辨率,可识别某一单个蛋白质或多肽。但来自磷酸化多肽的信号通常较弱,因而新的技术正在被研发以增强MS信号。这些策略包括固化金属亲和层析,磷酸化抗体的丰富,化学修饰方法和用生物素部份置换磷酸基团。
Multi-Analyte profiling技术涉及磷酸化抗体的应用和基于微孔板及膜的检测方式。这些检测技术可提供大量的数据,却只需极少量的样本。然而,这些检测技术并不比传统的检测方法敏感,原因在于潜在的抗体交叉反应。